发布时间:2022-11-16作者来源:金航标浏览:1714
1. USB 接口演进历史
1996 年,众所周之的通用串行接口(USB)初次问世。当时,版本 1.0 的 USB 接口仅可在低速(LS)模式和全速(FS)模式下,分别提供 1.5 Mb/s 和 12 Mb/s 的速率。2000 年, USB2.0 面市。新的高速(HS)模式可提供高达 480 Mb/s 的速率,并且依然向下兼容低速模式和全速模式。
2. USB3.0 系统概述
2008 年 11 月, USB3.0 技术规范发布。USB3.0 不仅包含了 USB2.0 的全部功能(HS、 FS 和LS),而且提供了名为超高速度(SuperSpeed)的单独的全新超高速数据链路。超高速度链路为下载(主机=>器件,被称为发送方向)和接收方向上的上传(器件=>主机)提供了单独的差分数据线路。超高速度模式可提供的[敏感词]数据率为 5 Gb/s(请参阅图 1 )。
图 1 USB3.0 超高速度模式和 USB2.0 模式物理链路(在主机侧和器件侧实现了静电防护)
要同时支持 USB2.0 功能和新的超高速度模式,电缆必须采用新的结构,以提供三条差分耦合信号线(TX+/Tx-、 RX+/Rx-和 D+/D-)。Vcc 线和接地线也是电缆中不可或缺的组成部分。这种低成本 USB3.0 电缆面临的挑战是,支持很高的截止频率,而不会在相邻的差分耦合线对之间形成干扰。(请参阅图 2)
图 2 USB3.0 电缆结构和电缆衰减(差分模式)
为了支持 USB3.0 电缆所包含的全部线路,必须强制规定采用一种新的连接器形状。新的 USB3.0 连接器的基本要求是,必须向下兼容 USB2.0 连接器。从静电防护的角度而言,这导致标准 A连接器的超高速度模式线路很容易被静电击中(在主机侧和器件侧)。一种强有力的对策是在USB3.0 链路中实现高效的静电防护机制。
超高速数据传输系统面临的一个最为严峻的问题是,确保在接收端实现一定程度的信号完整性。高信号完整性对实现很低的误码率非常重要(譬如,对于 USB3.0 超级速度模式,典型误码率为 1E-12)。眼图表明了信号完整性的特性。
在拥有无限带宽的完美系统中,眼图完全张开。而在实际的系统中,发送和接收阻抗(90欧姆差分阻抗)以及发送端和接收端的所有寄生电容,限制了信号的上升时间/下降时间。这些寄生电容存在于USB3.0收发器内部,和/或PCB外部。不匹配的PCB线路、USB3.0连接器或其他并联电容器等,均会造成外部寄生电容。因此,这些额外的并联电容器必须尽可能小。还必须考虑到USB3.0电缆的低通频率响应(请参阅图2)。为了抵消高频信号的衰减,可在发送端和接收端利用专用均衡器来调整信号。
这些措施均有助于加快处于上升和下降边缘的信号的速度,从而得到张得更开的眼图(即,更高信号完整性)(请参阅图 3)。
要实现适当的信号完整性性能, TVS 二极管的电容必须很低,但另一方面, TVS 二极管必须提供很高的静电防护能力。
图 3 发送端信号还原( 3.5dB 标准参数)和接收端线性均衡器(标准参数)
图4所示为整个USB3.0链路的眼图模拟(误码率为1E6时)。在图4(左图)中,接收信号是在未经接收端均衡器处理之前测得的。在图(右图)中,信号是经接收端均衡器处理之后测得的。红色的内轮廓线所示为用外推法得到的误码率为1E12时的眼图张开程度。红紫色轮廓线为USB3.0技术规范中规定的超高速度模式合规测试的有效值。比较两个眼图,在接收端使用均衡器的效果显而易见。
图 4 未经接收端均衡器处理之前的信号眼图(左图)与经接收端均衡器处理之后的信号眼图(右图)
超高速度链路和USB2.0传输链路采用了差分耦合90欧姆线路。链路内部的阻抗不匹配造成的信号反射会降低信号完整性。为了避免出现这种情况,包括 USB3.0 电缆在内的整个布局设计,应当实现 90 欧姆差分阻抗匹配。
为了使“削弱斜率”尽可能小,并且提供相同的线路延迟时间,所有差分耦合线路均必须为相同的长度。对于USB3.0电缆本身,这一点尤为重要。
较高“削弱斜率”会降低信号完整性,从而导致所谓的“差模共模信号转换”。所生产的共模信号会影响EMI测试的顺利进行。阻抗匹配的适当布局设计,能避免这些问题。
3. USB3.0 超高速度链路和 USB2.0 链路的静电防护布局设计提议
在整个 USB3.0 链路的布局设计中,应考虑下列因素:
(1)所有 PCB 线路和互连电缆均强制要求采用完全阻抗匹配的 90 欧姆差分设计
(2)必须最大限度地减少非差分耦合线路。非差分耦合线路会严重影响眼图内眼张开程度
(3)90欧姆差分耦合PCB线路的线路宽度和线路间隔不应太窄,以避免造成额外的损耗,并且这些线路应当足够结实,以便于生产。从生产的角度而言,差分线路的理想线路宽度为0.3毫米,线路间隔为0.2毫米。这会形成 200 微米的电介质高度(假设:FR4,且 er=4)
(4)差分耦合链路的正极和负极线路(包括USB3.0电缆)之间的延迟(线路长度)完全相同(最大限度地减小削弱斜率)。对于保持很高的信号完整性和避免生成共模信号,这一点很重要。
图 5 所示为兼具静电防护电路的 USB3.0 标准A连接器横截面布局设计示例。
图 5 标准 A 连接器+英飞凌静电防护装置 USB3.0 布局设计建议
4. 面向 USB3.0 的现代化静电防护策略
一方面,持续不断地减小芯片的各个组件的尺寸,是降低生产成本,扩展工作频率的根本。另一方面,这种微型化也产生了新的问题(如,容易发生静电击穿)。对提供可靠静电防护机制的要求与日俱增。
USB3.0可提供[敏感词]5Gb/s的数据率,因此基本频率高达2.5GHz。为了实现很高的信号完整性,数据信号的上升时间和下降时间必须非常短。第3谐波甚或第5谐波的处理,不应发生明显衰减。只能通过利用寄生效应最小且半导体开关速度最快的技术[敏感词]的半导体制程,才能实现这一点。这种微型化半导体结构的缺点是,在静电放电造成的过压面前不堪一击。采用内置静电防护装置,会引起寄生效应(寄生电容),并且要占用宝贵的片上空间。
一种十分经济高效的方法是,结合采用内置静电防护机制(集成到USB3.0收发器中),和专为提供外部静电防护而量身定制的性能强健的高电流应用电路(由器件/电路设计者在电路板上实现)。
内置静电防护机制旨在仅提供器件级保护,譬如,依照HBMJEDECJESD22-A115的规定。对于确保在开发、生产和电路板装配过程中安全地拿放器件,内置静电防护机制起到了重要作用。专为该应用量身定制的外部 TVS 二极管则实现了符合 IEC61000-4-2 标准的更加严格的系统级保护。
为了给 USB3.0 链路提供适当的系统级静电防护,静电防护器件(TVS 二极管)必须满足不同的要求。可参照 IEC61000-4-2标准,根据残余箝位电压以及 TVS 二极管对特定静电放电的响应,判断 TVS 二极管的静电防护性能。
TVS 二极管的一些特性,会影响其静电防护性能
[敏感词]导通电阻(R_on)(动态电阻(R_dynamic))
[敏感词]击穿电压(V_breakdown),专为该应用度身定制
根据经验,可以计算出箝位电压(V_clamp):
可根据TLP(传输线路脉冲)测定值,推导出动态电阻。(参见图6)为确保应用的安全,击穿电压必须与所保护的线路上施加的[敏感词]电源电压和[敏感词]信号电平相一致。动态电阻(R_dyn)应当尽可能小。结合最优击穿电压和[敏感词]动态电阻,可最大限度地减小 IC 上的残余静电放电应力。
根据 TLP 测定图,可计算出动态电阻(参见图 6):
图 6 专为给 USB3.0 超高速度链路提供静电防护而量身定制的英飞凌 ESD3V3U4UL 的 TLP 测定结果
为了保护另外的USB2.0链路,TVS二极管必须提供稍高一些的反向工作电压/击穿电压。要支持全速模式和低速模式,必须提供更高的击穿电压,从而形成[敏感词]+5V 左右的信号振幅。英飞凌 ESD5V3U1U 和ESD5V3U2U系列可提供[敏感词]5.3V的反向工作电压(击穿电压:[敏感词]6V)和0.4pF的典型二极管电容值。
5. 实现了静电防护的 USB3.0 超高速度链路的信号完整性
分别在实现了静电防护和未实现静电防护的情况下,对整个 USB3.0 超级速度链路执行了信号完整性模拟。(参见图 1 )
整个收发区具备 90 欧姆差分阻抗。考虑了发送端和接收端的寄生效应。测得数据表明了 USB3.0 电缆的状态。规定 USB3.0 电缆的最大长度为 3 米。
为了给USB3.0超高速度链路提供静电防护,在主机侧和器件侧均配置了英飞凌ESD3V3U4ULC。ESD3V3U4ULC具备卓越的静电防护性能,并且二极管电容(二极管对地)极低,典型值为 0.5pF。在模拟中,考虑了 USB3.0 超高速度链路的基本布局设计规则。(参见图 5)
在对整条USB3.0超高速度链路执行的信号完整性模拟中,按照USB3.0合规测试标准参数,实现了发送端信号还原和接收端均衡处理。分析了经接收端均衡器处理之后的超高速度信号的眼图。模拟所用误码率为 1E6。根据模拟结果,推导出误码率为 1E12 时的眼图张开程度(红色和蓝色轮廓线)。
分别在未配备 TVS 二极管(红色轮廓线)和配备了 TVS 二极管(ESD3V3U4ULC,蓝色轮廓线)的情况下,计算出眼图的张开程度。(参见图 7)
图 7 在主机侧和器件侧配置和未配置 ESD3V3U4ULC 时的眼图
在主机侧和器件侧实现超低电容 TVS 二极管 ESD3V3U4ULC,眼图张开程度(轮廓线)会受到一定影响。虽然眼图张开程度会略微减小,但相比于 USB3.0 技术规范中规定的基准模式(红紫色轮廓线)而言,仍大出许多。
浴缸状曲线模拟详尽地表明了TVS二极管的作用。黑色刻度线所示为USB3.0技术规范中规定的误码率为10E12时,眼图基准模式的电压和时间(皮秒)参数。红色曲线为未配备 TVS 二极管时计算所得, 蓝色曲线为在主机侧和器件侧配置了 ESD3V3U4ULC 时计算所得。
图 8 配备/未配备 TVS 二极管时的电压和时间浴缸状曲线模拟
6 结语:
精心设计USB3.0链路以实现最优系统级静电防护性能和毫厘不差的信号完整性,是一个强制性要求。要同时满足这两个要求,静电防护器件必须具备卓越的静电防护性能和很低的器件电容。采用“阵列”配置的英飞凌ESD3V3U4ULC,加上清楚明了的布局设计和高质量链路(USB3.0电缆),便能满足上述要求。
Copyright © 深圳市金航标电子有限公司 版权所有 粤ICP备17113853号